资源类型

期刊论文 436

会议视频 18

年份

2023 59

2022 45

2021 48

2020 36

2019 23

2018 16

2017 10

2016 22

2015 16

2014 14

2013 13

2012 15

2011 21

2010 14

2009 12

2008 22

2007 23

2006 11

2005 3

2004 3

展开 ︾

关键词

机理 9

双库协同机制 3

机制 3

2021全球工程前沿 2

DX桩 2

Maradbcm算法 2

作用机制 2

动力学 2

医学教育 2

原子力显微镜 2

工程前沿 2

木质素 2

环境 2

绿色化工 2

能源 2

2022全球工程前沿 1

21世纪海上丝绸之路 1

9 + 2结构 1

ANSYS 1

展开 ︾

检索范围:

排序: 展示方式:

A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

null

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 144-158 doi: 10.1007/s11465-016-0391-0

摘要:

A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A three-dimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

关键词: feasibility study     biped locomotor     biped walking     mechanical design     dynamic simulation     tripod leg mechanism     3-UPU parallel manipulator    

Design of a novel side-mounted leg mechanism with high flexibility for a multi-mission quadruped earth

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0740-0

摘要: Earth rover is a class of emerging wheeled-leg robots for nature exploration. At present, few methods for these robots’ leg design utilize a side-mounted spatial parallel mechanism. Thus, this paper presents a complete design process of a novel 5-degree-of-freedom (5-DOF) hybrid leg mechanism for our quadruped earth rover BJTUBOT. First, a general approach is proposed for constructing the novel leg mechanism. Subsequently, by evaluating the basic locomotion task (LT) of the rover based on screw theory, we determine the desired motion characteristic of the side-mounted leg and carry out its two feasible configurations. With regard to the synthesis method of the parallel mechanism, a family of concise hybrid leg mechanisms using the 6-DOF limbs and an L1F1C limb (which can provide a constraint force and a couple) is designed. In verifying the motion characteristics of this kind of leg, we select a typical (3-UPRU&RRRR)&R mechanism and then analyze its kinematic model, singularities, velocity mapping, workspace, dexterity, statics, and kinetostatic performance. Furthermore, the virtual quadruped rover equipped with this innovative leg mechanism is built. Various basic and specific LTs of the rover are demonstrated by simulation, which indicates that the flexibility of the legs can help the rover achieve multitasking.

关键词: design synthesis     parallel mechanism     hybrid leg mechanism     screw theory     quadruped robot    

Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

Conghui LIANG, Marco CECCARELLI, Yukio TAKEDA

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 357-370 doi: 10.1007/s11465-012-0340-5

摘要:

In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

关键词: biped robots     leg mechanisms     simulation    

Model testing of tripod caisson foundations in silty clay subjected to eccentric lateral loads

《结构与土木工程前沿(英文)》 2023年 第17卷 第3期   页码 467-476 doi: 10.1007/s11709-023-0933-6

摘要: In this study, model tests were conducted to investigate the bearing capacities of tripod caisson foundations subjected to eccentric lateral loads in silty clay. Lateral load–rotation curves of five eccentric-shaped tripod suction foundations were plotted to analyze the bearing capacities at different loading angles. It was observed that the loading angle significantly influenced the bearing capacity of the foundations, particularly for eccentric tripod caisson foundations. Compared with eccentric tripod caisson foundations, the traditional tripod foundation has a relatively high ultimate lateral capacity at the omnidirectional loading angle. By analyzing the displacement of the caissons, a formula for the rotational center of the tripod caisson foundation subjected to an eccentric lateral load was derived. The depth of the rotation center was 0.68–0.92 times the height of the caisson when the bearing capacity reached the limit. Under the undrained condition, suction was generated under the lid of the “up-lift” caisson, which helps resist lateral forces from the wind and waves.

关键词: tripod caisson foundation     silty clay     eccentric lateral capacity     model tests    

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

《机械工程前沿(英文)》 2022年 第17卷 第1期   页码 8-8 doi: 10.1007/s11465-021-0664-0

摘要: With the widespread application of legged robot in various fields, the demand for a robot with high locomotion and manipulation ability is increasing. Adding an extra arm is a useful but general method for a legged robot to obtain manipulation ability. Hence, this paper proposes a novel hexapod robot with two integrated leg–arm limbs that obtain dexterous manipulation functions besides locomotion ability without adding an extra arm. The manipulation modes can be divided into coordinated manipulation condition and single-limb manipulation condition. The former condition mainly includes fixed coordinated clamping case and fixed coordinated shearing case. For the fixed coordinated clamping case, the degrees of freedom (DOFs) analysis of equivalent parallel mechanism by using screw theory and the constraint equation of two integrated limbs are established. For the fixed coordinated shearing case, the coordinated working space is determined, and an ideal coordinated manipulation ball is presented to guide the coordinated shearing task. In addition, the constraint analysis of two adjacent integrated limbs is performed. Then, mobile manipulation with one integrated leg–arm limb while using pentapod gait is discussed as the single-limb manipulation condition, including gait switching analysis between hexapod gait and pentapod gait, different pentapod gaits analysis, and a complex six-DOF manipulation while walking. Corresponding experiments are implemented, including clamping tasks with two integrated limbs, coordinated shearing task by using two integrated limbs, and mobile manipulation with pentapod gait. This robot provides a new approach to building a multifunctional locomotion platform.

关键词: leg–arm integration     hexapod robot     fixed coordinated manipulation     mobile manipulation    

Performance investigation of artificial intelligence based controller for three phase four leg shunt

J. JAYACHANDRAN,R. MURALI SACHITHANANDAM

《能源前沿(英文)》 2015年 第9卷 第4期   页码 446-460 doi: 10.1007/s11708-015-0378-2

摘要: In this paper, the choice of power quality compensator is a DSTATCOM which constitutes a three phase four leg voltage source converter (VSC) with a DC capacitor. The control strategy proposed for the DSTATCOM is a neural network based one cycle control (OCC). This control strategy involves neural network block, digital circuits and linear elements, which eliminates the sensors required for sensing the load current and coupling inductor current in addition to the multiplier employed in the conventional method. The calculation of harmonic and reactive currents for the reference current generation is also eliminated, thus minimizing the complexity in the control strategy. The control strategy mitigates harmonic/reactive currents, ensures balanced and sinusoidal source current from the supply mains that are nearly in phase with the supply voltage, compensates neutral current, and maintains voltage across the capacitor under unbalanced source and load conditions. The performance of the DSTATCOM with the proposed artificial neural network (ANN) controllers is validated and investigated through simulations using Matlab software. The simulation results prove the efficacy of the proposed neural network based control strategy under varying source and load conditions.

关键词: neural network     DSTATCOM     neutral current mitigation     total harmonic distortion (THD)     three phase four wire distribution system     unbalanced and/or distorted source    

Theory and method of mechanism system design

Huijun ZOU, Qinghua LIANG, Qing ZHANG

《机械工程前沿(英文)》 2010年 第5卷 第4期   页码 399-411 doi: 10.1007/s11465-010-0116-8

摘要: Conceptual design is the most critical and creative phase of design. Recently, increasing attention has been directed to supporting conceptual-level computer aided creative design and its theories and methodologies. Specifically, for conceptual design of mechanical products, this paper presents a novel function solving model for mechanical product design and highlights the importance of systematic synthesis to achieve creative design. Then it builds a framework as a function-effect-process-action- mechanisms (FEPAM) mapping process, which enables creative design on the basis of conceiving different action schemes. After that, several key points are elaborated including 1) representing and decomposition methods of functions and motion behaviors; 2) action scheme representing method based on network plan techniques; and 3) variation and creation methods based on action scheme transformations.

关键词: mechanism system creative design     process model     function solving model     process action procedure     mechanisms knowledge base     principle of mechanism system composition    

Formation mechanism and modeling of surface waviness in incremental sheet forming

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0679-1

摘要: Improving and controlling surface quality has always been a challenge for incremental sheet forming (ISF), whereas the generation mechanism of waviness surface is still unknown, which impedes the widely application of ISF in the industrial field. In this paper, the formation mechanism and the prediction of waviness are both investigated through experiments, numerical simulation, and theoretical analysis. Based on a verified finite element model, the waviness topography is predicted numerically for the first time, and its generation is attributed to the residual bending deformation through deformation history analysis. For more efficient engineering application, a theoretical model for waviness height is proposed based on the generation mechanism, using a modified strain function considering deformation modes. This work is favorable for the perfection of formation mechanism and control of surface quality in ISF.

关键词: surface waviness     incremental sheet forming     numerical simulation     formation mechanism     deformation history    

Autogenous healing mechanism of cement-based materials

《结构与土木工程前沿(英文)》   页码 948-963 doi: 10.1007/s11709-023-0960-3

摘要: Autogenous self-healing is the innate and fundamental repair capability of cement-based materials for healing cracks. Many researchers have investigated factors that influence autogenous healing. However, systematic research on the autogenous healing mechanism of cement-based materials is lacking. The healing process mainly involves a chemical process, including further hydration of unhydrated cement and carbonation of calcium oxide and calcium hydroxide. Hence, the autogenous healing process is influenced by the material constituents of the cement composite and the ambient environment. In this study, different factors influencing the healing process of cement-based materials were investigated. Scanning electron microscopy and optical microscopy were used to examine the autogenous healing mechanism, and the maximum healing capacity was assessed. Furthermore, detailed theoretical analysis and quantitative detection of autogenous healing were conducted. This study provides a valuable reference for developing an improved healing technique for cement-based composites.

关键词: autogenous healing     cement-based materials     healing mechanism     aggregation effect    

Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 451-467 doi: 10.1007/s11465-021-0634-6

摘要: A redundantly actuated parallel manipulator (RAPM) with mixed translational and rotational degrees of freedom (DOFs) is challenged for its dimensionally homogeneous Jacobian modeling and optimal design of architecture. In this paper, a means to achieve redundant actuation by adding kinematic constraints is introduced, which reduces the DOFs of the end-effector (EE). A generic dimensionally homogeneous Jacobian is developed for this type of RAPMs, which maps the generalized velocities of three points on the EE to the joint velocities. A new optimization algorithm derived from this dimensionally homogeneous Jacobian is proposed for the optimal design of this type of RAPMs. As an example, this paper presents a spatial RAPM involving linkages and cam mechanisms. This RAPM has 4 DOFs and 6 translational actuations. The linkage lengths and the position of the universal joints of the RAPM are optimized based on the dimensionally homogeneous Jacobian.

关键词: redundant actuation     parallel manipulator     linkage–cam mechanism     Jacobian     optimal design    

Cryogenic minimum quantity lubrication machining: from mechanism to application

《机械工程前沿(英文)》 2021年 第16卷 第4期   页码 649-697 doi: 10.1007/s11465-021-0654-2

摘要: Cutting fluid plays a cooling–lubrication role in the cutting of metal materials. However, the substantial usage of cutting fluid in traditional flood machining seriously pollutes the environment and threatens the health of workers. Environmental machining technologies, such as dry cutting, minimum quantity lubrication (MQL), and cryogenic cooling technology, have been used as substitute for flood machining. However, the insufficient cooling capacity of MQL with normal-temperature compressed gas and the lack of lubricating performance of cryogenic cooling technology limit their industrial application. The technical bottleneck of mechanical–thermal damage of difficult-to-cut materials in aerospace and other fields can be solved by combining cryogenic medium and MQL. The latest progress of cryogenic minimum quantity lubrication (CMQL) technology is reviewed in this paper, and the key scientific issues in the research achievements of CMQL are clarified. First, the application forms and process characteristics of CMQL devices in turning, milling, and grinding are systematically summarized from traditional settings to innovative design. Second, the cooling–lubrication mechanism of CMQL and its influence mechanism on material hardness, cutting force, tool wear, and workpiece surface quality in cutting are extensively revealed. The effects of CMQL are systematically analyzed based on its mechanism and application form. Results show that the application effect of CMQL is better than that of cryogenic technology or MQL alone. Finally, the prospect, which provides basis and support for engineering application and development of CMQL technology, is introduced considering the limitations of CMQL.

关键词: cryogenic minimum quantity lubrication (CMQL)     cryogenic medium     processing mode     device application     mechanism     application effect    

Review on mechanism and process of surface polishing using lasers

Arun KRISHNAN, Fengzhou FANG

《机械工程前沿(英文)》 2019年 第14卷 第3期   页码 299-319 doi: 10.1007/s11465-019-0535-0

摘要: Laser polishing is a technology of smoothening the surface of various materials with highly intense laser beams. When these beams impact on the material surface to be polished, the surface starts to be melted due to the high temperature. The melted material is then relocated from the ‘peaks to valleys’ under the multidirectional action of surface tension. By varying the process parameters such as beam intensity, energy density, spot diameter, and feed rate, different rates of surface roughness can be achieved. High precision polishing of surfaces can be done using laser process. Currently, laser polishing has extended its applications from photonics to molds as well as bio-medical sectors. Conventional polishing techniques have many drawbacks such as less capability of polishing freeform surfaces, environmental pollution, long processing time, and health hazards for the operators. Laser polishing on the other hand eliminates all the mentioned drawbacks and comes as a promising technology that can be relied for smoothening of initial topography of the surfaces irrespective of the complexity of the surface. Majority of the researchers performed laser polishing on materials such as steel, titanium, and its alloys because of its low cost and reliability. This article gives a detailed overview of the laser polishing mechanism by explaining various process parameters briefly to get a better understanding about the entire polishing process. The advantages and applications are also explained clearly to have a good knowledge about the importance of laser polishing in the future.

关键词: laser polishing     surface roughness     process parameters     mechanism    

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 235-240 doi: 10.1007/s11465-011-0122-5

摘要:

To solve many key technical problems during the development of modern instrumentation system integration and provide a new mode and fundamental technical equipment for the research and development (R&D) of modern instrumentation products, based on the concept of an instrumentation flexible developing system (IFDS), this paper discusses the creation and open flexible integration mechanism, perfects the integrated supporting environment and integrated system of the flexible interconnection, and constructs the new flexible integrated system. Based on the operation mechanism of the modern instrumentation developing system and the research and optimization of the rapid integration design method, the paper emphasizes the dynamic integrating method of multiple types of knowledge in a modern instrument R&D system, to effectively utilize the rich integrated resource and achieve rapid integration of the system. Applications show that the new IFDS can improve the integration level and efficiency of R&D of the modern instrumentation system, enforce the reliability of the system, shorten the R&D period, and reduce the development costs.

关键词: modern instrumentation developing     flexible interconnection     flexible integration mechanism     rapid integration system     dynamic integrating method    

Mechanism and characterization of microplastic aging process: A review

《环境科学与工程前沿(英文)》 2023年 第17卷 第8期 doi: 10.1007/s11783-023-1700-6

摘要:

● Methods for estimating the aging of environmental micro-plastics were highlighted.

关键词: Microplastics     Aging     Degradation     Characterization     Mechanism    

The linkage mechanism between urban intelligence and low carbon innovation

Ming LIN

《工程管理前沿(英文)》 2019年 第6卷 第4期   页码 584-586 doi: 10.1007/s42524-019-0076-6

标题 作者 时间 类型 操作

A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

null

期刊论文

Design of a novel side-mounted leg mechanism with high flexibility for a multi-mission quadruped earth

期刊论文

Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

Conghui LIANG, Marco CECCARELLI, Yukio TAKEDA

期刊论文

Model testing of tripod caisson foundations in silty clay subjected to eccentric lateral loads

期刊论文

Different manipulation mode analysis of a radial symmetrical hexapod robot with leg–arm integration

期刊论文

Performance investigation of artificial intelligence based controller for three phase four leg shunt

J. JAYACHANDRAN,R. MURALI SACHITHANANDAM

期刊论文

Theory and method of mechanism system design

Huijun ZOU, Qinghua LIANG, Qing ZHANG

期刊论文

Formation mechanism and modeling of surface waviness in incremental sheet forming

期刊论文

Autogenous healing mechanism of cement-based materials

期刊论文

Optimal design of a linkage–cam mechanism-based redundantly actuated parallel manipulator

期刊论文

Cryogenic minimum quantity lubrication machining: from mechanism to application

期刊论文

Review on mechanism and process of surface polishing using lasers

Arun KRISHNAN, Fengzhou FANG

期刊论文

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

期刊论文

Mechanism and characterization of microplastic aging process: A review

期刊论文

The linkage mechanism between urban intelligence and low carbon innovation

Ming LIN

期刊论文